US009135129B2

a2 United States Patent

Brocker et al.

US 9,135,129 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR TESTING A
RANDOM NUMBER GENERATOR TESTER

(71) Applicants:Matthew W. Brocker, Gilbert, AZ (US);
Steven E. Cornelius, Gilbert, AZ (US);
Thomas E. Tkacik, Phoenix, AZ (US)
(72) Inventors: Matthew W. Brocker, Gilbert, AZ (US);
Steven E. Cornelius, Gilbert, AZ (US);
Thomas E. Tkacik, Phoenix, AZ (US)
(73) Assignee: Freescale Semiconductor, Inc., Austin,
TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 293 days.
(21) Appl. No.: 13/739,732
(22) Filed: Jan. 11, 2013
(65) Prior Publication Data
US 2014/0201252 Al Jul. 17,2014
(51) Imt.ClL
GO6F 7/58 (2006.01)
GO6F 11/22 (2006.01)
(52) US.CL
CPCcccee. GO6F 11/2205 (2013.01); GOG6F 7/58

(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,788,479 B2
2010/0057820 Al*

8/2010 Ishii
3/2010 Matsumoto et al. 708/250

* cited by examiner
Primary Examiner — Michael D Yaary
57 ABSTRACT

A method and apparatus for testing operation of a random
number generator (RNG) testing circuit are provided. In
accordance with at least one embodiment, a first RNG output
value obtained from a RNG is stored in a first register. In
response to activation of a test mode to simulate a faulty RNG,
the first RNG output value is stored in a second register. The
first RNG output value in the first register is compared to the
first RNG output value in the second register. In response to
the comparing, a RNG failure signal is provided at a RNG
testing circuit output of the RNG testing circuit. In accor-
dance with at least one embodiment, sequential and combi-
national logic can simulate a faulty RNG. Accordingly, simu-
lation of a faulty RNG may be performed to test a RNG
testing circuit even when the RNG is not faulty.

20 Claims, 8 Drawing Sheets

RANDOM NUMBER
GENERATOR (RNG)

4&97 §104

REGISTER BLOCK

| 7 s

]]

MULTIPLEXER | |

>

REGISTER BLGCK

138

127

102
....................... |
gl 09 < 110 i
PROCESSOR |'Z——>| MEMORY | i
122 !

131

v
132

1331 111 1‘%}1 112 13vSI 113 1331 114 13\4 115
S S S S S

HUMAN
INPUT

| DISPLAY | ‘ STORAGE | | NETWORK | | OTHER |

DEVICES

U.S. Patent Sep. 15, 2015 Sheet 1 of 8 US 9,135,129 B2

100
20_3__5-_291_ _____________ 1
: S l
| 1165 !
i 30 ™ RANDOM NUMBER i
!) GENERATOR (RNG) !
1 1
1 1
| §107 |
! 117 Y !
! 104 !
i 2 [e] |
P>
i 125, | (119 123 i
»| REGISTER BLOCK
l 126 106 [~ l
: »l> 108 :
1 1
. 118 m !
: v 105 |
. 121 .
! »| MULTIPLEXER !
|) 124 I
! 128? >> 138 M !
i > REGISTER BLOCK [2, i
I N I
1 1
|____ S I e I | _L!
7 102
S
S NV RO IS Y A [A Sad ,
1
: <109 <110 i
i J| PROCESSOR fert—s MEMORY |1
! > 122 !
i 127? 1 !
! 131 :
. ~ :
: |
1
! |
1
: < A A A X A <132 A > i
| 133 134 135 136 137 :
LA 111 TH 112 A 113 A 114 A 115!
: \ 4 g \ 4 g A\ g A\ g \ 4 g |
1
L | HUMAN DISPLAY STORAGE NETWORK OTHER | !
' | INPUT |
|| DEVICES i
1

U.S. Patent Sep. 15, 2015 Sheet 2 of 8 US 9,135,129 B2

101
I0_3__S_9 ______________ 1
l ¢ |
! 116? !
i 130 > RANDOM NUMBER i
! 2 GENERATOR (RNG) !
| 1
| 1
i 107 .
| Y g 1
! 117 !
104
! | 24 Y FF :
: 125 g 119 :
| 1
| pi - | < 123 I
»| REGISTER BLOCK
| 126, 106 [l
! »> 108 !
1 1
|
! 118 ¢ 105 m :
. ¥ 121 :
l 124] |1
l > M |
! REGISTER BLOCK [275 !
l I
|____ - r--_---°l. _ -T2 | LI
102
0 N O S N S I glL0e
|
: <109 (110 i
i J PROCESSIR fei—{ MEMORY ||
. > 122 !
| /'y |
: |
! 131 :
| I~/ :
: 1
1
! |
|
- 132 o
| - A A A A A T 1
| 133 134 135 136 137 !
LA 111 A 112 A 113 A 114 A 115!
: S } s Y R } g5
1
| | HUMAN DISPLAY STORAGE NETWORK OTHER | !
'l INpUT !
|| DEVICES i
1

U.S. Patent Sep. 15, 2015 Sheet 3 of 8 US 9,135,129 B2

101
IO_B__S_Q ______________ 1
l ¢ I
| 116? !
i 20 > RANDOM NUMBER i
. 2 GENERATOR (RNG) !
1 1
1 1
! 107 !
1 4 g 1
! 117 !
104
i v S FF i
»>
| | 119 123 |
! REGISTER BLOCK | !
1 106 1
| 108 |1
1 1
| 118 m .
| v <105 |
! 121 .
| 124 |1
! 128? »> !
»>

: >> REGISTER BLOCK | ;5 :
| |
|__ ________ -4y _--—_—"————"—"_"""""""""""""""" - ‘‘_‘_ | _!
e I I R S I gl
1
: <109 ¢ 110 i
i R PROCESSOR <> MEMORY !
. > 122 !
i 127? 1 !
! 131 :
. o l
: 1
! l
: <« A A A 4 A <132 A > i
| 133 134 135 136 137 :
L A 111 A 112 A (113 A 114 A 115!
: g \ 4 g Y g \ 4 g Y g 1

1
1| HUMAN DISPLAY STORAGE NETWORK OTHER | !
'l INPUT !
|| DEVICES i
1

U.S. Patent Sep. 15, 2015 Sheet 4 of 8 US 9,135,129 B2

101
20_3__5_9 ______________ |
l S I
| 1165 :
i .] RANDOM NUMBER i
. 305 GENERATOR (RNG) .
1 1
1 1
! 107 |\
1 A 4 g 1
. 117 !
104
| FF !
|
>>
: | 119 123 :
! REGISTER BLOCK L !
. 106 .
l 108 |1
| |
. 118 m .
: & <105 :
' > 121 .
i > MULTIPLEXER | 2l |
! > 138 1 |
i REGISTER BLOCK [245y i
l l
I 1 | _LI
N R S S (102
1
i §109 g110 i
i J| PROCESSOR eyt MEMORY |}
. > 122 !
! /Y |
|
1
! 131 :
1 I~/ :
| I
|
! I
L 132 o
| A A A A A T 1
| 133 134 135 136 137 !
T N ez TV 13 M (14 T 115
: A 4 \ 4 Y A\ 4 Y |
1
| e DISPLAY STORAGE NETWORK oTHER | !
|| DEVICES i
1

U.S. Patent Sep. 15, 2015 Sheet 5 of 8 US 9,135,129 B2

101
_________________________________ s
P 103 |
| 1 :
| > RANDOM NUMBER i
: 1305 GENERATOR (RNG) |
I 1
E 117 v 1% i
1
i v gl FF !
1
1
I > I
. 119 |
! REGISTER BLOCK | 123 !
i 106 I
! 108 |
I 1
1
. |
| ‘?’8 <105 |
: 121 i
l 124 |1
1 > Y :
i REGISTER BLOCK [20 i
1 _>> :
I 1
|__ ____________ 1 | _L
129
~ c102
I S IS N R Sute ,
: §109 §110 i
1
: - PROCESSR [ers—>1 MEMORY |1
! > 122 !
1 A 1
! 1
! 1
' 131 |
1 A :
: !
' l
1
! 132 . i
| « Y S
| A A A A |
133 134 135 136 137) !
Y N cnz N 113 Y 14 "§115i
1
! | HUMAN NETWORK otHER | !
L o DISPLAY STORAGE :
' | DEVICES i
1

U.S. Patent Sep. 15, 2015 Sheet 6 of 8 US 9,135,129 B2

10_3__5591_ _____________ |
l S I
| 116? !
i > RANDOM NUMBER :
. 1305 GENERATOR (RNG) l
| |
| |
! 107 |
1 A 4 g 1
. 117 !
104
i v 9 FF i
»>
! REGISTER BLOCK N, l
| 106 |
: 108 :
| |
. 118 m .
: v g105 :
i 121 i
. 124 |1
| .t ol
i REGISTER BLOCK [2, i
l l
I o o T ——,_, ..., | _L!
102
I IS A N R gl10e
|
| <109 <110 i
i J| PROCESSOR Jerd—! MEMORY ||
. > 122 !
I 7§ ,
: I
i 131 :
. ~ l
| I
|
! |
|
: « A A A Y A <132 A » i
133 134 135 136 137 !
Y] T 12 T 113 Ty 14 Y (15 |
: A 4 Y A 4 A 4 Y |
|
| e DISPLAY STORAGE NETWORK OTHER | !
' | DEVICES i
|

U.S. Patent Sep. 15, 2015 Sheet 7 of 8 US 9,135,129 B2

701 ’,——700
(START;

5711
o (R 1
702? i) §7U3 ! §704
STORING A OBTAINING FROM A : CAUSING THE
FIRST RNG DIFFERENT SOURCE THE | | |FIRST RNG OUTPUT
OUTPUT VALUE FIRST RNG QUTPUT : VALUE TO BE
OBTAINED VALUE TO BE STORED IN j—— COPIED FROM THE
FROM A RNG THE SECOND REGISTER, | FIRST REGISTER
IN A FIRST WHERIN THE RNG IS A ! TO THE SECOND
REGISTER DETERMINISTIC RNG ! REGISTER
I
% Gl »le--————-- -
710 i) §705
IN RESPONSE TO
ACTIVATION OF A TEST
MODE TO SIMULATE A
FAULTY RNG, STORING
THE FIRST RNG QUTPUT
VALUE IN A SECOND
REGISTER
i' §706

COMPARING THE FIRST RNG OUTPUT VALUE IN THE FIRST REGISTER
TO THE FIRST RNG OUTPUT VALUE IN THE SECOND REGISTER

§707
Y
PROVIDING A RNG FATLURE SIGNAL AT A RNG TESTING
CIRCUTT OUTPUT OF THE RNG TESTING CIRCUIT
712
P e Em e e o e Sl|
i} §7U8:

PROVIDING THE RNG FAILURE SIGNAL AT AN RNG TESTING
CIRCUIT OUTPUT OF THE RNG TESTING CIRCUIT IN RESPONSE TO
A SOFTWARE-WRITABLE MEMORY BIT BEING SET TO A FIRST STATE

U.S. Patent

Sep. 15, 2015 Sheet 8 of 8

801

(START;

Y

§802

STORING A FIRST RNG OUTPUT
VALUE OF A PROPERLY OPERATING
RNG IN A FIRST REGISTER

§803

Y

STORING A SECOND VALUE IN
A SECOND REGISTER

§804

Y

COMPARING THE FIRST RNG
OUTPUT VALUE IN THE FIRST
REGISTER TO THE SECOND VALUE
IN THE SECOND REGISTER AND
PROVIDING A COMPARATOR OUTPUT
SIGNAL AT A COMPARATOR OUTPUT

Y

RECEIVING THE COMPARATOR OUTPUT
SIGNAL AND A SOFTWARE -WRITABLE
VALUE AT A LOGIC CIRCUIT

\ 4

PROVIDING FROM THE LOGIC CIRCUIT
A RNG FAILURE SIGNAL AT A RNG
TESTING CIRCUIT OUTPUT OF THE
RNG TESTING CIRCUIT IN RESPONSE

TO A LOGICAL RELATIONSHIP OF THE

COMPARATOR OUTPUT SIGNAL AND THE

§805

§806

SOFTWARE -WRITABLE VALUE

! 807
CEND 5

FI1G. 8

US 9,135,129 B2

’,——800

US 9,135,129 B2

1
METHOD AND APPARATUS FOR TESTING A
RANDOM NUMBER GENERATOR TESTER

BACKGROUND

1. Field of the Disclosure

This disclosure relates generally to random number gen-
eration and, more specifically, to testing of random number
generators (RNGs).

2. Description of the Related Art

Random number generators (RNGs) provide data (e.g.,
numbers) exhibiting randomness. RNGs may be nondeter-
ministic, in which case subsequent random data does not
depend on prior random data, or deterministic, in which case
subsequent random data is determined by prior random data,
but the relationship between the prior random data and the
subsequent random data is sufficiently obscure for the ran-
dom data to exhibit sufficient randomness for its intended
application. The randomness of random data generated by a
RNG makes it very difficult to determine if a RNG is working
properly. Thus, for many applications, a RNG can be assumed
to be working properly unless it can be determined not to be
working properly. One way in which a RNG might not work
properly is if the RNG becomes “stuck’ and outputs the same
data repeatedly. To check for such a condition, a first set of
random data output by a RNG may be saved and compared to
a second set of random data output by the RNG, and the
comparison between the first set of random data and the
second set of random data may indicate whether the first set of
random data and the second set of random data are identical,
in which case the improper operation of RNG may be sig-
nalled by asserting a RNG failure signal.

Since RNGs are generally quite reliable and the incidence
of'a “stuck” RNG is generally rare, it is problematic to test
whether a circuit for testing for a “stuck” RNG will actually
assert a RNG failure signal in the unlikely event of a “stuck”
RNG. Uncertainty with respect to a circuit for testing for a
“stuck” RNG can thus lead to uncertainty with respect to the
reliability of the RNG being tested.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

FIG. 1 is a block diagram illustrating a system comprising
a RNG subsystem in accordance with at least one embodi-
ment.

FIG. 2 is a block diagram illustrating apparatus for testing
a RNG tester by selectively writing a value to a first block in
accordance with at least one embodiment.

FIG. 3 is a block diagram illustrating apparatus for testing
a RNG tester by selectively writing a value to a second block
in accordance with at least one embodiment.

FIG. 4 is a block diagram illustrating apparatus for testing
a RNG tester by selectively causing a value being written to a
first block to also be written to a second block in accordance
with at least one embodiment.

FIG. 5 is a block diagram illustrating apparatus for testing
a RNG tester by selectively causing a value stored in a first
block to be copied to a second block in accordance with at
least one embodiment.

FIG. 6 is a block diagram illustrating apparatus for simu-
lating a RNG fault indication of a RNG tester in accordance
with at least one embodiment.

FIG. 7 is a flow diagram illustrating a method for testing a
RNG tester in accordance with at least one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 is a flow diagram illustrating a method for simulat-
ing a RNG fault indication of a RNG tester in accordance with
at least one embodiment.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION OF THE DRAWINGS

A method and apparatus for testing operation of a random
number generator (RNG) testing circuit are provided. In
accordance with at least one embodiment, a first RNG output
value obtained from a RNG is stored in a first register. In
response to activation of a test mode to simulate a faulty RNG,
the first RNG output value is stored in a second register. The
first RNG output value in the first register is compared to the
first RNG output value in the second register. In response to
the comparing, a RNG failure signal is provided at a RNG
testing circuit output of the RNG testing circuit. In accor-
dance with at least one embodiment, sequential and combi-
national logic can simulate a faulty RNG. Accordingly, simu-
lation of a faulty RNG may be performed to test a RNG
testing circuit even when the RNG is not faulty.

A RNG is used to obtain values of sufficient randomness
for the applications obtaining the values from the RNG. Such
applications may include, for example, cryptographic appli-
cations for providing privacy, authentication, integrity verifi-
cation, and the like. However, for a RNG to be useful for such
purposes, it must be working properly. Fully analyzing the
randomness of the output of a RNG is difficult, but one simple
test that can show the RNG is producing different values each
time it is called upon to provide a value is to compare the
previously provided value with the currently provided value
and determine whether or not they are the same value. If they
are not the same value, the RNG can be presumed to be
working properly. Such a test may be referred to as a continu-
ous random number check. Implementing such a check in
hardware can make its function immutable and, therefore,
make it tamper resistant. Thus, a hardware-based continuous
random number check is useful for testing the operation of a
RNG.

However, the ability to test the operation of a RNG could
create a false sense of security if the testing circuit were not
reliable. Since a RNG is typically designed to be very reliable,
the likelihood of'ever observing an indication ofa faulty RNG
from a RNG testing circuit is very low. Two consecutive
random numbers that are equal should never be generated
back to back, which therefore makes it very difficult to test for
a faulty RNG in absence of an actual faulty RNG. Without
being able to observe such an indication, it is not possible to
show that the RNG testing circuit is able to detect a faulty
RNG, nor is it possible to show that a method or apparatus for
responding to a faulty RNG, such as a software routine for
managing a response to a faulty RNG, would function prop-
erly. Thus, a method and apparatus for validating RNG testing
and response functionality are provided. As an example, such
a method and apparatus may comprise a method and appara-
tus for testing a circuit for testing a RNG. As another example,
such a method and apparatus may comprise a method and
apparatus for testing a response of software to be executed in
response to the detection of a faulty RNG. Such a method and
apparatus may provide verification that a failure is correctly
handled by software.

FIG. 1 is a block diagram illustrating a system 100 com-
prising a RNG subsystem 101 in accordance with at least one
embodiment. System 100 also comprises processing sub-
system 102 connected to RNG subsystem 101. RNG sub-
system 101 comprises RNG 103, register block 104, register

US 9,135,129 B2

3

block 105, and comparator 106. Register block 105 may
comprise multiplexer 138. RNG subsystem 101 may also
comprise combinational logic gate 108 and sequential logic
gate 107. As an example, combinational logic gate 108 may
be an OR gate. As an example, sequential logic gate 107 may
be a D flip-flop. Processor subsystem 102 comprises a pro-
cessor 109 and memory 110. Processor subsystem 102 may
also comprise any or all of a bus 132, human input devices
111, display 112, storage 113, network interface 114, and
other peripherals 115.

Processor 109 is connected to RNG 103 by connection 116,
by which processor 109 may request RNG 103 to generate a
random number. An output of RNG 103 is connected to
processor 109, to an input of register block 104, and may be
selectively connected to an input of register block 105 by
connection 117, at which RNG 103 may output a random
number it generates. Thus, the random number may be pro-
vided not only to processor 109, which may have requested
the generation of the random number, but also to register
block 104, which may store a copy of the random number. In
normal operation, register block 105 would not also receive a
copy of the random number, but the random number may be
selectively copied to register block 105 to test RNG sub-
system 101 in accordance with at least one embodiment, as
will be described in detail below. If the random number at
connection 117 is to be selectively copied to register block
105, register block 105 may use a multiplexer 138 connected
to connection 117 and to connection 118 to select whether the
value to be received as an input to register block 105 is to be
the value present at connection 117 (i.e., the random number
generated by RNG 103) or the value present at connection
118 (i.e., a previously generated random number previously
generated by RNG 103 and stored in register block 104). An
output of register block 104 is connected to a first input of
comparator 106 via connection 119 and to an input of register
block 105 via connection 118. RNG 103 may be connected to
a clock input of register block 104 and to a clock input of
register block 105 via connection 130 to cause the random
number at the output of RNG 103 at connection 117 to be
latched into register 104 and to cause the random number
stored in register block 104 (i.e., a previously generated ran-
dom number) and present at the output of register block 104
at connection 118 to be latched into register block 105 when
RNG 103 asserts connection 130 when a random number has
been generated and is being output at connection 117.

Register block 105 provides an output to a second input of
comparator 106 via connection 120. Comparator 106 com-
pares a first value received at its first input via connection 119
from register block 104 to a second value received at its
second input via connection 120 from register block 105. If
the first value is unequal to the second value, comparator 106
does not assert a compare failed signal at connection 121. If
the first value is equal to the second value, comparator 106
asserts a compare failed signal at connection 121. The output
of comparator 106 at connection 121 may be connected
directly to processor 109 or, as shown, the output of compara-
tor 106 at connection 121 may be connected to an input of a
combinational logic gate 108 (e.g., an OR gate). An output of
a sequential logic gate 107 (e.g., a D flip-flop) may be con-
nected to another input of combinational logic gate 108 via
connection 123. Combinational logic gate 108 asserts a com-
pare failed signal at its output, which is connected via con-
nection 124 to an input of processor 109, if comparator 106
determines the values provided by register block 104 and
register block 105 to be equal or if the value provided to
combination logic gate 108 by sequential logic gate 107 indi-
cates that combination logic gate 108 should assert the com-

10

20

25

30

40

45

55

4

pare failed signal, which may, for example, be done for testing
purposes. Processor 109 is connected to sequential logic gate
107. As an example, processor 109 may be connected to
memory 110 and to sequential logic gate 107 via memory bus
122. As an example, sequential logic gate 107 may be mapped
into memory address space into which memory 110 is not
mapped, which may allow processor 109 to selectively access
sequential logic gate 107, for example, by writing via
memory bus 122 a value to a memory address mapped to
sequential logic gate 107.

An output of processor 109 may be connected to an input of
register 104 via connection 125 to allow processor 109 to
provide a value to be stored in register block 104 and via
connection 126 to a clock input of register 104 to allow
processor 109 to cause a value provided via connection 125 to
be latched into register 104. Such an arrangement allows
processor 109 to selectively load any desired value into reg-
ister 104. For example, if processor 109 stored the previously
generated random number stored in register block 105 in
memory 110 when such previously generated random num-
ber was provided to processor 109 via connection 117, pro-
cessor 109 may copy such previously generated random num-
ber from memory 110 to register 104, replacing the current
random number stored in register 104, so that the previously
generated random number copied to register 104 will be equal
to the previously generated random number stored in register
105, causing comparator 106 to detect the equality and to
assert the compare failed output at connection 121, allowing
register block 104, register block 105, comparator 106, and
all hardware and software downstream from comparator 106
for processing the compare failed signal to be tested. An
output of processor 109 may be connected to an input of
register 105 via connection 127 to allow processor 109 to
provide a value to be stored in register block 105 and via
connection 128 to a clock input of register block 105 to allow
processor 109 to cause a value provided via connection 127 to
be latched into register block 105. Such an arrangement
allows processor 109 to selectively load any desired value
into register block 105. For example, processor 109 may copy
the random number being stored in register block 104 into
register block 105, as such random number is provided to
processor 109 via connection 117. Processor 109 may replace
the previously generated random number stored in register
105 with the random number stored in register block 104, so
that the random number copied to register 105 will be equal to
the random number stored in register 104, causing compara-
tor 106 to detect the equality and to assert the compare failed
output at connection 121, allowing register block 104, regis-
ter block 105, comparator 106, and all hardware and software
downstream from comparator 106 for processing the com-
pare failed signal to be tested.

An output of processor 109 may be connected via connec-
tion 129 to a clock input of register block 105, allowing
processor 109 to cause the value at the output of register block
104 at connection 118 to be latched into register block 105,
making the value in register block 105 equal to the value in
register block 104, causing comparator 106 to detect the
equality and to assert the compare failed output at connection
121, allowing register block 104, register block 105, com-
parator 106, and all hardware and software downstream from
comparator 106 for processing the compare failed signal to be
tested.

Processor 109 may be connected to bus 132 via bus con-
nection 131. Peripherals may be connected to bus 132. For
example, human input devices 111 may be connected to bus
132 via bus connection 133, display 112 may be connected to
bus 132 via bus connection 134, storage 113 may be con-

US 9,135,129 B2

5

nected to bus 132 via bus connection 135, network interface
114 may be connected to bus 132 via bus connection 136, and
other peripherals 115 may be connected to bus 132 via bus
connection 137. In accordance with at least one embodiment,
such peripherals may be connected to processor 109 directly
without going through bus 132, bus 132 may be combined
with memory bus 122 into a single bus, bus 132 may be
implemented as several separate buses, or RNG subsystem
101 may be connected to processor 109 via bus 132.

FIG. 2 is a block diagram illustrating apparatus for testing
a RNG tester by selectively writing a value to a first block in
accordance with at least one embodiment. The embodiment
of FIG. 2 provides connections 125 and 126 from processor
109 to register block 104 to allow processor 109 to load any
desired value in register block 104, which may, for example,
be avalue equal to the value stored in register block 105, so as
to test comparator 106 and subsequent hardware and software
intended to operate in response to assertion of the output of
comparator 106. In contrast with an embodiment described in
conjunction with FIG. 1, an ability for processor 109 to load
an arbitrary value into register block 105, to selectively cause
register block 105 to store a random number as that random
number is being stored in register block 104, and to cause
register block 105 to latch the value present at the output of
register block 104 need not be present in such an embodi-
ment.

FIG. 3 is a block diagram illustrating apparatus for testing
a RNG tester by selectively writing a value to a second block
in accordance with at least one embodiment. The embodi-
ment of FIG. 3 provides connections 127 and 128 from pro-
cessor 109 to register block 105 to allow processor 109 to load
any desired value in register block 105, which may, for
example, be a value equal to the value stored in register block
104, so as to test comparator 106 and subsequent hardware
and software intended to operate in response to assertion of
the output of comparator 106. In contrast with an embodiment
described in conjunction with FIG. 1, an ability for processor
109 to load an arbitrary value into register block 104, to
selectively cause register block 105 to store a random number
as that random number is being stored in register block 104,
and to cause register block 105 to latch the value present at the
output of register block 104 need not be present in such an
embodiment.

FIG. 4 is a block diagram illustrating apparatus for testing
a RNG tester by selectively causing a value being written to a
first block to also be written to a second block in accordance
with at least one embodiment. The embodiment of FIG. 4
provides a selective connection via connection 117 from the
output of RNG 103 to an input of register block 105 to allow
the value being stored in register block 104 to also be stored
in register block 105, so as to test comparator 106 and sub-
sequent hardware and software intended to operate in
response to assertion of the output of comparator 106. In
contrast with an embodiment described in conjunction with
FIG. 1, an ability for processor 109 to load an arbitrary value
into register block 104, to load an arbitrary value into register
block 105, and to cause register block 105 to latch the value
present at the output of register block 104 need not be present
in such an embodiment.

FIG. 5 is a block diagram illustrating apparatus for testing
a RNG tester by selectively causing a value stored in a first
block to be copied to a second block in accordance with at
least one embodiment. The embodiment of FIG. 5 provides
connection 129 from processor 109 to register block 105 to
allow processor 109 to cause register block 105 to latch the
value present at the output of register block 104, which is the
value currently stored in register block 104, so as to test

10

15

20

25

30

35

40

45

50

55

60

65

6

comparator 106 and subsequent hardware and software
intended to operate in response to assertion of the output of
comparator 106. In contrast with an embodiment described in
conjunction with FIG. 1, an ability for processor 109 to load
an arbitrary value into register block 104, to load an arbitrary
value into register block 105, and to selectively cause register
block 105 to store a random number as that random number is
being stored in register block 104 need not be present in such
an embodiment.

FIG. 6 is a block diagram illustrating apparatus for simu-
lating a RNG fault indication of a RNG tester in accordance
with at least one embodiment. The embodiment of FIG. 6
comprises combinational logic gate 108 and sequential logic
gate 107. Since the state of sequential logic gate 107 may be
determined by execution of software executed by processor
109, where, for example, the software may write a value to a
memory location to change the state of sequential logic gate
107, sequential logic gate 107 is said to be software-writable.
The state of sequential logic gate 107 can, via connection 123,
affect the state of the output of combination logic gate 108 at
connection 124. For example, while comparator 106 can
cause a compare failed signal to be asserted at connection
124, changing the state of sequential logic gate 107 can also
cause the same compare failed signal to be asserted at con-
nection 124 even in absence of a condition at comparator 106
that would otherwise cause the compare failed signal to be
asserted at connection 124. Thus, combinational logic gate
108 and sequential logic gate 107 can force the compare
failed signal to be asserted to simulate an error in the RNG
subsystem and allow elements, such as software being
executed on a processor, intended to respond to the compare
failed signal to be tested. In contrast with an embodiment
described in conjunction with FIG. 1, an ability for processor
109 to load an arbitrary value into register block 104, to load
an arbitrary value into register block 105, to selectively cause
register block 105 to store a random number as that random
number is being stored in register block 104, and to cause
register block 105 to latch the value present at the output of
register block 104 need not be present in such an embodi-
ment.

While the sequential logic gate 107 is shown as providing
an output to combinational logic gate 108, and combination
logic gate 108 is shown as receiving inputs from sequential
logic gate 107 and comparator 106, other configurations may
be practiced. As an example, an output of combinational logic
gate 108 may be connected to an input of sequential logic gate
107 such that the output of combinational logic gate 108 is
latched into sequential logic gate 107 when the inputs of
combinational logic gate 108 validly represent a comparison
of'the values stored in register blocks 104 and 105 and a state
provided by a signal from processor 109. Thus, if processor
109 provides a signal to cause combinational logic gate 108 to
assert a compare failed signal at the output of combinational
logic gate 108, such a compare failed signal may be latched
into sequential logic gate 107 to preserve that state. If com-
parator 106 detects that the contents of register blocks 104
and 105 are equal and asserts a compare failed signal at the
output of comparator 106, combinational logic gate 108 may
assert the compare failed signal at the output of combinational
logic gate 108, and such a compare failed signal may be
latched into sequential logic gate 107 to preserve that state.

In accordance with at least one embodiment, the signal
communicated via connection 124 may be further condi-
tioned. As an example, the output of logic gate 108 may
provide a signal to another one or more other logic gates to
control the manner in which the signal is communicated to
processor 109. As an example, the output of logic gate 108

US 9,135,129 B2

7

may be connected to the input of another combinational logic
gate, for example, an AND gate, and another signal, for
example, the signal provided via connection 130 may be
connected to another input of such combinational logic gate.
Accordingly, the circuit may be configured to output a RNG
failure indication signal when processor 109 issues a request,
for example, via connection 116, for random data from the
RNG, when such a request occurs after processor 109 has
changed the state of sequential logic gate 107 to force the
RNG failure indication signal to be provided. Such a coordi-
nation of RNG failure indication signal with the request for
random data from the RNG can allow the forced compare
failure to mimic a real compare failure not only in its occur-
rence but also in the timing of its occurrence. Alternatively,
other signal conditioning of the signal communicated via
connection 124 may be utilized.

FIG. 7 is a flow diagram illustrating a method 700 for
testing a RNG tester in accordance with at least one embodi-
ment. The method 700 begins in block 701. From block 701,
the method 700 may continue to block 702 or to block 703 or
to both simultaneously. In block 702, a first RNG output value
obtained from a RNG is stored in a first register. From block
702, the method 700 continues either to block 703 (e.g., if
block 703 has not already been performed) or to block 706. In
block 703, the first RNG output value to be stored in the
second register is obtained from a different source (i.e., a
source different from the RNG, such as, for example, a pro-
cessor configured to calculate the first RNG output value
independently from the calculation performed by the RNG).
The first register may be a register that, in normal operation,
receives its value from the RNG and provides its value to the
second register, or the first register may be a register that, in
normal operation, receives its value from the second register.
The second register may be a register that, in normal opera-
tion, receives its value from the first register, or the second
register may be register that, in normal operation, receives its
value from the RNG and provides its value to the first register.
From block 703, the method 700 continues to block 705. In
block 705, in response to activation of a test mode to simulate
a faulty RNG, the first RNG output value is stored in a second
register. From block 705, the method 700 continues either to
block 702 (e.g., if block 702 has not already been performed)
or to block 706. As denoted by dashed lines 710 and 711, in
accordance with at least one embodiment, block 703 may be
omitted, with the method 700 proceeding instead to block
705. As shown by block 704, block 703 may be performed by
causing the first RNG output value to be copied from the first
register to the second register.

In block 706, the first RNG output value in the first register
is compared to the first RNG output value in the second
register. From block 706, the method 700 continues to block
707. In block 707, a RNG failure signal is provided at a RNG
testing circuit output of the RNG testing circuit. The RNG
failure signal provided in block 707 may be dependent upon
the comparison of block 706. For example, as both the first
register and the second register contain the first RNG output
value, the comparison of block 706 determines the first RNG
output value in the first register to be equal first RNG output
value in the second register, so the RNG failure signal of
block 707 signals a RNG failure. From block 707, the method
700 continues via dashed line 712 and ends in block 709. In
accordance with at least one embodiment, the method 700
may also comprise block 708. In block 708, the RNG failure
signal is provided at the RNG testing circuit output of the
RNG testing circuit in response to a software-writable
memory bit being set to a first state. As an example, the
method 700 may continue from block 707 to block 708 and

10

15

20

25

30

35

40

45

50

55

60

65

8

from block 708 to block 709. In accordance with at least one
embodiment, block 708 may be practiced before or after other
blocks (e.g., blocks 701-707 and 709 or blocks 701, 702,
704-707, and 709) are performed and need not be performed
in a temporally contiguous manner with such other blocks.
For example, block 708 may be performed during a different
iteration of random number generation by the RNG.

FIG. 8 is a flow diagram illustrating a method 800 for
simulating a RNG fault indication of a RNG tester in accor-
dance with at least one embodiment. The method 800 begins
in block 801. From block 801, the method 800 continues to
block 802. In block 802, a first RNG output value of a prop-
erly operating RNG is stored in a first register. From block
802, the method 800 continues to block 803. In block 803, a
second value is stored in a second register. Blocks 802 and
803 may occur in any order. As examples, block 802 may
occur before, during, or after block 803. The second value
may be any of several types of values. As examples, the
second value may be a RNG output value previous to the first
RNG output value, a RNG output value subsequent to the first
RNG output value, or an arbitrary value. In the case where the
second value is a RNG output value, the second value, as one
example, may be obtained by the second register from the first
register instead of being obtained by the second register from
the RNG directly or, as another example, may be obtained
from the RNG directly. From block 803, the method 800
continues to block 804. In block 804, the first RNG output
value in the first register is compared to the second value in
the second register, and a comparator output signal is pro-
vided at a comparator output. From block 804, the method
800 continues to block 805. In block 805, the comparator
output signal and a software-writable value are received at a
logic circuit. From block 805, the method 800 continues to
block 806. In block 806, the logic circuit provides a RNG
failure signal at a RNG testing circuit output of the RNG
testing circuit in response to a logical relationship of the
comparator output signal and the software-writable value.
From block 806, the method 800 continues to block 807,
where the method 800 ends.

In accordance with at least on embodiment, a method to
test a continuous RNG test capability is provided. Such a
method can allow software to detect the entire error path,
from detection down to the software that catches and reports
the condition, as a positive test. Such a positive test, which
could result from a faulty RNG, can be simulated in a system
with a properly operating RNG, the operation of which would
not otherwise result in such a positive test.

At least one embodiment can force an error regardless of
whether the two blocks of RNG data provide a comparison
result showing them to be equal or not equal to each other. A
comparison error can be forced, and thus a failure of a con-
tinuous RNG test can be simulated, by performing a software
write to a bit in the address map of addressable memory
locations. Once this bit is set, the next block of random data
that is generated will automatically generate a compare error.
Such a simulated error, however, does not verity that the
equality operation functions as expected, which can be per-
formed as described elsewhere herein, but does allow soft-
ware to verify that the compare failed and that the RNG
subsystem reports the compare failure properly back to soft-
ware utilizing the RNG subsystem, such as cryptographic
software.

At least one embodiment may utilize a mechanism other
than mapping the error-forcing bit to a memory address, so
such bit may be set and cleared by an operation other than
writing a value to a memory address. As an example, the
circuit comprising the sequential logic element and the com-

US 9,135,129 B2

9

binational logic element may be connected to the processor
via a communication bus (e.g., a I2C, SPI, etc. bus). In the
event that such a communication bus uses addressing, the
circuit may be addressed using a device address rather than a
memory address. As another example, the circuit comprising
the sequential logic element and the combinational logic ele-
ment may be connected to the processor via another type of
connection, for example, a general-purpose input/output
(GPIO) line. Such a connection may be expanded, for
example, by multiplexing it, or such a connection may be
made on a one-to-one basis solely between the processor and
the circuit comprising the sequential logic element and the
combinational logic element. Alternatively, other techniques
for setting and clearing a bit in the sequential logic element
under the control of software executed on a processor may be
used to control the operation of the circuit comprising the
sequential logic element and the combinational logic ele-
ment.

At least one embodiment can simulate a RNG error by
allowing writing of a value to a block to be compared that
represents the next random value provided by the RNG. Most
random number generators have a deterministic mode that
allows software to generate deterministic random data. If the
software knows what the next deterministic block of random
data will be, then software can write the value directly into a
block to be compared. When software requests the next block
to be generated, a compare error will be flagged by the ran-
dom number generator. Such a procedure will verify that the
equality operation is working as expected.

Apparatus may include a RNG with a continuous RNG
tester and additional logic circuitry to test the operation of the
continuous RNG tester. The additional logic circuitry allows
an unlikely failure of the RNG to be simulated. The ability to
simulate the RNG failure provides software a way of verify-
ing that the random compare actually works in a system,
which provides objective evidence that the RNG and the
continuous RNG tester can be trusted to perform properly.

To test the operation of a RNG, a random number test may
be performed. The random number test may be performed
continuously, which refers to testing each random number
generated as it is provided by the RNG. Continuous RNG
testing of a RNG allows a RNG fault to be identified imme-
diately and, with appropriate action by software utilizing the
RNG, can prevent faulty RNG values from being used. If, for
example, a cryptographic module employs approved or non-
approved RNGs in an approved mode of operation, it may be
desirable for the module to perform the following continuous
random number generator test on each RNG that tests for
failure to a constant value: (1) If each call to a RNG produces
blocks of n bits (where n>15), the first n-bit block generated
after power-up, initialization, or reset shall not be used, but
shall be saved for comparison with the next n-bit block to be
generated. Each subsequent generation of an n-bit block shall
be compared with the previously generated block. The test
shall fail if any two compared n-bit blocks are equal. (2) If
each call to a RNG produces fewer than 16 bits, the first n bits
generated after power-up, initialization, or reset (for some
n>15) shall not be used, but shall be saved for comparison
with the next n generated bits. Each subsequent generation of
n bits shall be compared with the previously generated n bits.
The test fails if any two compared n-bit sequences are equal.
While the test may provide a way to test a RNG, at least one
embodiment disclosed herein provides a way to test the
implementation of the above test to provide assurance that not
only the RNG, but also the RNG test, are working properly.
By adding testability to logic that is otherwise not testable by
software, as the RNG should never generate the same value

10

15

20

25

30

35

40

45

50

55

60

65

10

twice in a row, improved confidence in the reliability of the
RNG subsystem, as a whole, is provided. The proper opera-
tion of software for responding to a compare error of a RNG
test may be verified in situ using the actual circuits of the RNG
subsystem, and such verification may be performed as fre-
quently as desired in a deployed system, for example, every
time power is applied to the system, every time the RNG
subsystem is initialized, every time the RNG subsystem is
requested to generate a random number, periodically during
system operation, and the like.

In accordance with at least one embodiment, a method for
testing operation of a random number generator (RNG) test-
ing circuit comprises, at a first time, storing a first RNG output
value obtained from a RNG in a first register; at a second time,
in response to activation of a test mode to simulate a faulty
RNG, storing the first RNG output value in a second register;
at a third time, comparing the first RNG output value in the
first register to the first RNG output value in the second
register; and, in response to the comparing, providing a RNG
failure signal at a RNG testing circuit output of the RNG
testing circuit. In accordance with at least one embodiment,
the second time occurs after the first time. In accordance with
at least one embodiment, the second time occurs before the
first time. In accordance with at least one embodiment, the
second time occurs substantially simultaneously with the first
time.

In accordance with at least one embodiment, the method
further comprises obtaining from a different source the first
RNG output value to be stored in the second register, wherein
the RNG is a deterministic RNG. In accordance with at least
one embodiment, the storing the RNG output value in the
second register comprises causing the first RNG output value
to be copied from the first register to the second register. In
accordance with at least one embodiment, the method further
comprises providing the RNG failure signal at a RNG testing
circuit output of the RNG testing circuit in response to a
software-writable memory bit being set to a first state.

In accordance with at least one embodiment, a method
comprises storing a first random number generator (RNG)
output value of a properly operating RNG in a first register;
storing a second value in a second register; comparing the first
RNG output value in the first register to the second value in
the second register and providing a comparator output signal
at a comparator output; receiving the comparator output sig-
nal and a software-writable value at a logic circuit; and pro-
viding from the logic circuit a RNG failure signal at a RNG
testing circuit output of the RNG testing circuit in response to
a logical relationship of the comparator output signal and the
software-writable value. In accordance with at least one
embodiment, the logic circuit causes the RNG failure signal
to have a RNG failure signal value indicative of a RNG failure
when the software-writable value has a first value regardless
of'a comparator output value of the comparator output signal.
In accordance with at least one embodiment, the logic circuit
stores the software-writable value and performs a logical
operation on the software-writable value and a comparator
output value of the comparator output signal received from
the comparator to produce the RNG failure signal.

In accordance with at least one embodiment, a random
number generator (RNG) testing circuit comprises a first
register for storing a RNG output value of a RNG; a second
register comprising a test mode input adapted to cause the
second register to store the RNG output value to simulate a
faulty RNG; and a comparator coupled to the first register and
to the second register for comparing the RNG output value in
the first register to the RNG output value in the second register
while the RNG output value is stored in the first register and

US 9,135,129 B2

11

the second register and for providing a RNG failure signal at
a RNG testing circuit output of the RNG testing circuit. In
accordance with at least one embodiment, the second register
is configured to store the RNG output value after the first
register has stored the RNG output value. In accordance with
at least one embodiment, the second register is configured to
store the RNG output value before the first register has stored
the RNG output value. In accordance with at least one
embodiment, the second register is configured to store the
RNG output value simultaneously with the first register stor-
ing the RNG output value.

In accordance with at least one embodiment, the RNG
testing circuit further comprises a processor distinct from the
RNG, the processor coupled to the second register, the pro-
cessor for calculating the RNG output value to be stored in the
second register, wherein the RNG provides the RNG output
value to be stored in the first register, wherein the RNG is a
deterministic RNG. In accordance with at least one embodi-
ment, the second register obtains the RNG output value stored
in the second register from the first register. In accordance
with at least one embodiment, the RNG testing circuit further
comprises a memory for storing a software-writable memory
bit, wherein the RNG testing circuit provides the RNG failure
signal at the RNG testing circuit output in response to a
software-writable memory bit being set to a first state.

In accordance with at least one embodiment, a random
number generator (RNG) testing circuit comprises a first
register for storing a first RNG output value of a properly
operating RNG; a second register for storing a second value;
a comparator coupled to the first register and to the second
register for comparing the first RNG output value in the first
register to the second value in the second register and for
providing a comparator output signal at a comparator output
of'the comparator; and a logic circuit coupled to the compara-
tor output for receiving the comparator output signal and a
software-writable value and for providing a RNG failure sig-
nal at a RNG testing circuit output of the RNG testing circuit
in response to a logical relationship of the comparator output
signal and the software-writable value, the logic circuit com-
prising: a sequential logic element; and a combinational logic
element coupled to the sequential logic element. In accor-
dance with at least one embodiment, the logic circuit causes
the RNG failure signal to have a RNG failure signal value
indicative of a RNG failure when the software-writable value
has a first value regardless of a comparator output value of the
comparator output. In accordance with at least one embodi-
ment, the sequential logic element stores the software-writ-
able value and the combinational logic element performs a
logical operation on the software-writable value received
from the sequential logic element and a comparator output
value of the comparator output signal received from the com-
parator to produce the RNG failure signal.

Although the invention is described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
invention as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present inven-
tion. Any benefits, advantages, or solutions to problems that
are described herein with regard to specific embodiments are
not intended to be construed as a critical, required, or essential
feature or element of any or all the claims.

Furthermore, those skilled in the art will recognize that
boundaries between the functionality of the above described
operations are merely illustrative. The functionality of mul-
tiple operations may be combined into a single operation,

10

15

20

25

30

35

40

45

50

55

60

12

and/or the functionality of a single operation may be distrib-
uted in additional operations. Moreover, alternative embodi-
ments may include multiple instances of a particular opera-
tion, and the order of operations may be altered in various
other embodiments.

Benefits, other advantages, and solutions to problems have
been described above with regard to specific embodiments.
However, the benefits, advantages, solutions to problems, and
any feature(s) that may cause any benefit, advantage, or solu-
tion to occur or become more pronounced are not to be con-
strued as a critical, required, or essential feature of any or all
the claims.

What is claimed is:

1. A method for testing operation of a random number
generator (RNG) testing circuit comprising:

at a first time, storing a first RNG output value obtained

from a RNG in a first register;

at a second time, in response to activation of a test mode to

simulate a faulty RNG, storing the first RNG output
value in a second register;

at a third time, comparing the first RNG output value in the

first register to the first RNG output value in the second
register; and

in response to the comparing, providing a RNG failure

signal at a RNG testing circuit output of the RNG testing
circuit.

2. The method of claim 1 wherein the second time occurs
after the first time.

3. The method of claim 1 wherein the second time occurs
before the first time.

4. The method of claim 1 wherein the second time occurs
substantially simultaneously with the first time.

5. The method of claim 1 further comprising:

obtaining from a different source the first RNG output

value to be stored in the second register, wherein the
RNG is a deterministic RNG.

6. The method of claim 1 wherein the storing the RNG
output value in the second register comprises:

causing the first RNG output value to be copied from the

first register to the second register.

7. The method of claim 1 further comprising:

providing the RNG failure signal at a RNG testing circuit

output of the RNG testing circuit in response to a soft-
ware-writable memory bit being set to a first state.

8. A method comprising:

storing a first random number generator (RNG) output

value of a properly operating RNG in a first register;
storing a second value in a second register;
comparing the first RNG output value in the first register to
the second value in the second register and providing a
comparator output signal at a comparator output;

receiving the comparator output signal and a software-
writable value at a logic circuit; and

providing from the logic circuit a RNG failure signal at a

RNG testing circuit output of the RNG testing circuit in
response to a logical relationship of the comparator out-
put signal and the software-writable value.

9. The method of claim 8 wherein the logic circuit causes
the RNG failure signal to have a RNG {failure signal value
indicative of a RNG failure when the software-writable value
has a first value regardless of a comparator output value of the
comparator output signal.

10. The method of claim 8 wherein the logic circuit stores
the software-writable value and performs a logical operation
on the software-writable value and a comparator output value
of'the comparator output signal received from the comparator
to produce the RNG failure signal.

US 9,135,129 B2

13

11. A random number generator (RNG) testing circuit
comprising:

a first register for storing a RNG output value of a RNG;

a second register comprising a test mode input adapted to
cause the second register to store the RNG output value
to simulate a faulty RNG; and

a comparator coupled to the first register and to the second
register for comparing the RNG output value in the first
register to the RNG output value in the second register

5

while the RNG output value is stored in the first register 10

and the second register and for providing a RNG failure
signal at a RNG testing circuit output of the RNG testing
circuit.

12. The RNG testing circuit of claim 11 wherein the second
register is configured to store the RNG output value after the
first register has stored the RNG output value.

13. The RNG testing circuit of claim 11 wherein the second
register is configured to store the RNG output value before the
first register has stored the RNG output value.

14. The RNG testing circuit of claim 11 wherein the second
register is configured to store the RNG output value simulta-
neously with the first register storing the RNG output value.

15. The RNG testing circuit of claim 11 further compris-
ing:

a processor distinct from the RNG, the processor coupled
to the second register, the processor for calculating the
RNG output value to be stored in the second register,
wherein the RNG provides the RNG output value to be
stored in the first register, wherein the RNG is a deter-
ministic RNG.

16. The RNG testing circuit of claim 11 wherein the second
register obtains the RNG output value stored in the second
register from the first register.

17. The RNG testing circuit of claim 11 further compris-
ing:

a memory for storing a software-writable memory bit,

wherein the RNG testing circuit provides the RNG fail-

15

20

25

30

35

14

ure signal at the RNG testing circuit output in response
to a software-writable memory bit being set to a first
state.

18. A random number generator (RNG) testing circuit
comprising:

a first register for storing a first RNG output value of a

properly operating RNG;

a second register for storing a second value;

a comparator coupled to the first register and to the second
register for comparing the first RNG output value in the
first register to the second value in the second register
and for providing a comparator output signal at a com-
parator output of the comparator; and

a logic circuit coupled to the comparator output for receiv-
ing the comparator output signal and a software-writable
value and for providing a RNG failure signal at a RNG
testing circuit output of the RNG testing circuit in
response to a logical relationship of the comparator out-
put signal and the software-writable value, the logic
circuit comprising:

a sequential logic element; and
a combinational logic element coupled to the sequential
logic element.

19. The RNG testing circuit of claim 18 wherein the logic
circuit causes the RNG failure signal to have a RNG failure
signal value indicative of a RNG failure when the software-
writable value has a first value regardless of a comparator
output value of the comparator output.

20. The RNG testing circuit of claim 18 wherein the
sequential logic element stores the software-writable value
and the combinational logic element performs a logical
operation on the software-writable value received from the
sequential logic element and a comparator output value of the
comparator output signal received from the comparator to
produce the RNG failure signal.

#* #* #* #* #*

